Maximum signal-to-noise ratio detection of radar targets involves applying a matched filter to the received signal. This produces a map of reflected power as a function of delay and frequency. An unfortunate side effect of the matched filter is delay-frequency ambiguity, which is a function of the encoding of the radar pulse. The spurious off-target responses present in the matched-filtered signal are called delay-frequency sidelobes. When multiple or distributed targets are present, these sidelobes clutter the filtered signal and make detection and interpretation difficult.

Radar Model

- For a coded transmitted pulse \(s \) and a received signal \(y \), the matched filter is given by
 \[
 x[n, p] = \sum_{m} s^*[m - p]e^{-2\pi inm/Ny[n,m]},
 \]
 \(x = A^*(y) \).
- Our radar model is the adjoint operation given by
 \[
 y[m] = \sum_{p=1}^{P-1} s[m - p] \left(\sum_{n=1}^{N-1} e^{-2\pi inm/N} h[n, p] \right),
 \]
 \(y = A(h) \),
 where \(h \) is the target reflectivity as a function of frequency and delay.

Solution Method

- With the radar measurements modeled by
 \[
 y = A(h) + n,
 \]
 where \(n \) is complex Gaussian noise, we seek a solution by solving the \(l_1 \)-regularized least-squares problem
 \[
 \arg \min_{h} \left(\|y - A(h)\|_2 + \lambda \|h\|_1 \right)
 \]
 with the parameter \(\lambda \) set according to the noise level.
- The problem is convex and easily solved by applying the proximal gradient descent algorithm, resulting in a solution procedure called iterative soft thresholding.

Results Summary

- Sidelobe-free waveform inversion is performed by adding the sparse solution provided by the radar model to the unmodeled noise.
- Inversion results primarily differ because the signal generator and transmitter alter each code to varying amounts (an uncoded pulse is easier to produce) and not because of the code’s suitability.

Conclusions

- Sparse decomposition effectively removes delay-frequency sidelobes from meteor signals, revealing “blobular” nature of non-specular trails.
- Inversion technique works with coded and uncoded radar pulses and is applicable to any sparse target.
- Quality of sidelobe-removal depends on the similarity between the actual transmitted pulse (subject to signal-generator and bandwidth constraints) and the ideal modeled pulse.